SUPERLINEAR CONVERGENCE FOR PCG USING BAND PLUS
ALGEBRA PRECONDITIONERS FOR TOEPLITZ SYSTEMS*
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Abstract. This paper is concerned with the fast and efficient solution of n x n symmetric ill
conditioned Toeplitz systems T (f)x = b where the generating function f is a priori known and in
particular is real valued, nonnegative, having isolated roots of even order. The preconditioner that
we propose is a product of a band Toeplitz matrix and matrices that belong to a certain trigonometric
algebra. The underline idea of the proposed scheme is to embody the well known advantages that
each component of the product presents, when they are used alone at the same time which are
minimized their disadvantages. As a result we obtain a flexible preconditioner which can be applied
to the system Tn(f)z = b infusing superlinear convergence to the PCG method. The important
feature of the proposed technique is that it can be extended to cover the 2D case, i.e. ill-conditioned
band Toeplitz with Toeplitz blocks (BTTB) matrices. We perform many numerical experiments
and the results fully confirm the effectiveness of the proposed strategy and the adherence to the
theoretical analysis.
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1. Introduction. In this paper we introduce and analyze a new approach for
the solution, by means of the Preconditioned Conjugate Gradient (PCG) method,
of ill conditioned linear systems Tz = b where T = T,(f) is a Toeplitz matrix. A
matrix is called Toeplitz matrix if its (¢, ;) entry depends only on the difference i — j
of the subscripts i.e. t; ; = t;—;. The function f(x) whose Fourier coefficients give the
diagonals of T, (f) i.e.

m

Tix=tin==— [ [fl@e U %z, 1<jk<n,

2 J_ .
is called the generating function of T,(f) and in the rest of the paper we will assume
that it is a priori known.

Such kind of matrices arise in a wide variety of fields of pure and applied mathe-
matics such as signal theory, image processing, probability theory, harmonic analysis,
control theory etc. Therefore, a fast and effective solver is not only welcome but also
necessary.

Several direct methods for solving Toeplitz systems have been proposed; the most
efficient algorithms are called “superfast” and require O(n log? n) operations to com-
pute the solution. The stability properties of these direct methods are discussed in [6].
The main disadvantage of these kind of methods is that in 2D they can not exploit
efficiently the Block Toeplitz structure of the matrices and as a consequence they are
far away from being characterized a near optimal choice as they need O(nm? lognm).

We focus on the case where the generating function f is real-valued continuous 27-
pericdic defined in I = [—, 7], where the associated Toeplitz matrix is a Hermitian
matrix.
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In the case where f is a positive function the matrix becomes a well-conditioned
Hermitian positive definite matrix. In addition, if f is also an even function, it
becomes a well-conditioned symmetric positive definite (spd) matrix. For this case,
preconditioners belonging to some trigonometric matrix algebra have been proposed to
achieve superlinear convergence of the PCG method. Circulant preconditioners have
been proposed by G. Strang [24], by R. Chan [7] and by R. Chan and M. Yeung [11]
for well conditioned spd systems. 7 preconditioners proposed for the same systems
by D. Bini and F. Di Benedeto [2] and by by F. Di Benedeto [13]. To cover the
well conditioned Hermitian positive definite case, Hartley prconditioners have been
proposed by D. Bini and P. Favati [3] and by X.Q. Jin [16].

It is well known that matrices that belong to any trigonometric matrix algebra,
when they are used as preconditioners, can not give superlinear convergence [17),[18].
Moreover, there are cases where the corespondent matrices are singular ones, as,
e.g., in the case where f is a nonnegative function having roots of even order and
the preconditioner matrix is chosen to be a circulant one of Strang type. In this
specific case the system becomes an ill conditioned symmetric positive definite one.
Problems with such kind of matrices arise in a variety of applications: signal and
image processing, tomography, harmonic analysis and partial differential equations.

Band Toeplitz preconditioners are ideal to cover this case of ill conditioned sys-
tems. They succeed in making the condition number of the preconditioned system
independent of the dimension n. First, R. Chan [8] proposed as preconditioner the
band Toeplitz matrix generated by the trigonometric polynomial g that matches the
roots of f. R. Chan and P. Tang [10] extended the previous preconditioner, to the
ones based also to a kind of approximation of f and finally, S. Serra Capizzano [21]
proposed the band Toeplitz preconditioner which is based on g that matches the roots
and also on the best trigonometric Chebyshev approximation of the remaining positive
part é.

Preconditioners based on 7 algebra have studied by F. Di Benedeto , G. Fiorentino
and 8. Serra Capizzano [14], by F. Di Benedeto [12] and by Serra Capizzano [22], while
w-circulant preconditioners have been proposed by D. Potts and G. Steidl [20] and by
R. Chan and W. K. Ching [9].

Finally, a mixed type preconditioner a product of band Toeplitz matrices and
inverses of band Toeplitz matrices, based on the best rational approximation of the
remaining positive part, has been studied and proposed by the authors in [19].

In this paper we study and propose as a preconditioner, a product of the band
Toeplitz matrix generated by g and matrices that belong to any trigonometric algebra
and correspond to an approximation of the positive part. The underline idea of the
proposed scheme is to combine the well known advantages that each of the components
of the product presents when it is used as a stand alone preconditioner. As a result
we obtain a flexible preconditioner which can be applied to the system T,,(f)z = b
infusing superlinear convergence to the PCG method. Convergence theory of the
proposed preconditioner is developed and an alternating technique is proposed in
case where convergence is not achieved. Finally, we compare our method with the
already known in the literature techniques.

The paper is organized as follows. In §2 we introduce the basic idea for the
construction of the aforementioned preconditioners and study their computational
cost. In §3 we develop the convergence theory in both cases of using band plus
7 preconditioners and band plus circulant ones. In §4 we propose and study an
alternating smoothing technique, for both cases, when the convergence properties
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studied in §3 do not hold. §5 is devoted to applications, to numerical experiments
and to concluding remarks.

2. Band plus Algebra preconditioners. Let f € Ca; be a 2m-periodic non-
negative function with roots zg,z1,...,z; of multiplicities 2k;,2ks,...,2k; respec-
tively, with ky + kg + -+ k; = k. Then f can be written as a product g - w where

l

(2.1) g(z) = H(2—2cos(:c—scz-))k"

i=1

and with w(z) > 0 for every z € [—, 7]
We define as a preconditioner for the system

(2.2) To(f)z=b

the product of matrices

(2.3) E7(f) = An(V)Tn(9)An (Vo) = An (W) T (g) An(h)

with A,, € {r,C,H}, where {r,C,H} is the set of matrices belonging to 7, Circulant
and Hartley algebra, respectively. We have put for simplicity h = /w.

It is obvious from the construction of K, that it fulfils the fundamental proper-
ties that each preconditioner must have, i.e the positive definiteness and symmetry
(Hermitian).

Although the idea of using as preconditioners for the system (2.2) a product of
band Toeplitz matrices with 7, circulant or Hartley ones is not new (see e.g [9] or
[23]), what we propose is more general and flexible in the sense that it can use as A,
any matrix belonging to {7,C,H}, can treat both symmetric and Hermitian systems
([23]) and can be efficiently extended to the 2D case.

2.1. Construction of the preconditioner-Computation cost. For the band
Toeplitz matrix T}, (g) things are straightforward. To construct A,(h) we use the
relation

An(h) = Qn - Diag (R(u™) - Q7
where the entries of the vector u™ are ul = g”—(-;——l), i =1(1)n and @, is the Fourier
matrix F,, for the circulant case or the matrix Re(F,) + Im(Fy,) for the Hartley case.

For the 7 case we have u} = 2, i = 1(1)n and Qn = /7 [sin(juf)]7;—1-

The evaluation of the function h at the points u™ requires the evaluation of the
function w and the computation of real square roots, which can be done by a fast and
simple algorithm based on “Newton’s Method” and is a of O(n) ops. In any case,
the above procedure does not incur in the total asymptotic complexity of the method
as it is implemented once per every n. The computation @ - v is performed via Fast
Fourier Transforms (or Fast Sine Transforms in the 7 case) and requires O(nlogn)
ops. Finally, the ‘inversion’ of T,,(g) can be done in O(nlogp + plogzplog%) ops,
where p is its bandwidth, using the algorithm proposed in [4] or even better in O(n)
using the multigrid technique proposed in [15]. So, the total optimal cost of O(nlogn)
is preserved per each iteration of PCG.
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3. Convergence Theory.

3.1. Convergence of the method: 7 case. We start with the case where
A, € 7. We will show that the main mass of the eigenvalues of the preconditioned
matrix

(3.1) (Tn(R)Tn(g)7n(h)) T (f)

is clustered around unity. Before we give the main results for this case we give a
definition and report a useful lemma.

DEFINITION 3.1. The set of the continuous functions f for which the modulus of
continuity w(f,8) (see [25]) is o(|logd|™1), is the Dini-Lipschitz cluss and is denoted
by C*.

LEMMA 3.2. Let w € C3 be a positive and even function. Then, for any positive
€, there exist N and M > 0 such that for every n > N at most M eigenvalues of the
matriz T, (w) — o (w) have absolute value greater than e.

Proof. See [23], Theorem 2.1. O

THEOREM 3.3. Let T,(f) be the Toeplitz matriz produced by a nonnegative func-
tion f in Cor which can be written as f = g-w, where g the trigonometric polynomial of
order k as it given by (2.1) and w = h? is a strictly positive even function belonging to
C*. Then, for every € > 0 there exist N and M > 0 such that for everyn > N at most
M eigenvalues of the preconditioned matriz (3. 1) lie outside the interval (1—e¢, 1+€).

Proof. We begin with the observation that the matrix 75,(f) can be written
(see [5]) as Tn(g)Tn(w) + Ly, where L is a low rank matrix. Taking into account
the specific form of Ly, which contains only nonzero columns at the first and last k
columns, we obtain that rank(L;) = rank(LT) = 2k and rank(L; + LT) = 4k. From
the close relationship between 7 matrices and band Toeplitz matrices we have that

Tolf) = 5 (Ta(9)Ta(w) + L1) + 5 (Ta(w)Talg) + LT)

((9) + La)Ta(w) + L1) + 5(Ta(w)(ra(g) + L2) + LT)

[N Y R

Tn(9)Tn(w) + éTn(g)Tn(w) + Ls,

where Ly and Lj are low rank symmetric matrices. More specifically, as L, has
nonzero elements only at the upper left and lower right corner, the factor Lo T, (w) +
T (w)L2 has nonzero entries only in the & — 1 first and last rows and columns, i.e
it is a border matrix. So, the rank of the matrix Lz is at most 4k. To study the
spectrum of the preconditioned matrix K7(f)™1T,(f) with K7(f)™* as in (2.3), we
consider the symmetric form of it T, = Tn(g) ™27 (k) 1T (f)7n(h) ~2Tn(g)~ 2, which
is similar to the first one. So

T = Talg) 7 (h) T f)rm(B) T (g)
- %Tn(g)'%mh)'1 (7 ()T (w) + Ton(w)Ta() + La) 1 (k) T (9) 2
- %Tn(g)—%Tn(g)m(h)*Tn(w)m(h)‘lTn(g)‘%

+ 5Ta(9) H 7 (A T )7 (h) 7 ()Ta(9) + Lg

T0(9) ™% (Tulg) — La)Tn () " T (w)rn(h) " Tn(g) ™%
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+ 2 T(g) bra(R) Ta(w)ra(h) ™ (Talg) ~ L) (o)™
1

= 5Tn(0) 7 (h) T T (w)7u () T Tfg) ™

Bl

+ Ly

+ 5 Tal0) B rn(W) I Ta ()W) Tal0)? + Ls,

where Lz, Ly and Ly are dense symmetric matrices of low rank, with rank(L4) =
rank(Ls) and therefore the rank of Ls is at most 8% — 4 (the rank of Ly plus twice
the rank of Ls).

From Lemma 3.2 we obtain that for the choice of ¢, > 0 there exist a low rank
(of constant rank) matrix Lg and a matrix E of small norm (|| E||2 < €), such that

(3.2) Tn(R) " Tn(w)mn (h) ™' = I + E + L,

where I is the n-dimensional identity matrix. Hence

= 1 1 EcR | oo i
Tn = "Q"TH(Q)E(I +E+ LG)Tn(Q)_Z at "Q'Tn(g) # (I + E =R LS)Tn(g)2
1 1 1 1 1 1
+Ls =1+ 5Ta(9)2 ETn(9) ™% + 5Tn(9) 2 ETn(9)® + L,

where L is a symmetric low rank matrix with its rank being no greater than the sum
of the rank of Ls and the double of the one Lg.

The proof of the main issue that ‘fn has a clustering at one, is reduced to the
proof that for every e¢ > 0, there exists e;, > 0, with ||E||2 < e, such that all the
eigenvalues of the matrix

[s™

1 1 1 1 1
A = §Tn(g)§ETn(Q)_7 o ’an(Q)_EETn(Q)

belong in the interval (—¢,¢). Equivalently, since A, is symmetric, we have to prove
that both matrices €I + A, and e — A, are positive definite matrices.

First, we prove that ¢l + A, is positive definite. This is equivalent to proving
that

Ta(o)H (el + A)Tal0) = eTalo) + 5Tal0)E + 5ETal9)

is a positive definite matrix. For this, we consider a normalized vector z € IR",
(Jlzll2 = 1) and take the Rayleigh quotient

1 1
r=ex? Tn(g)z + §mTTn(g)E$ + EJ:TETn(g)m = exT Ty (g9)z + 27T (g) Ex.
The norm of the vector y = Fz is given by
€= llyllz = | Bzllz < || Ell2]l]l2 < er-

Let z be the normalized vector of y, so y = éz, then the Rayleigh quotient takes the
form

(23] r = ex? Tn(g)z + €27 T (g)2.
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The second term of (3.3) takes the minimum value for z being the normalized vector

of —T(g)z. So,

3 tgmTTn(g)zsc
1T (g)x]l2

= ¢ Ta(9)¥allz — enl|Tulo)allz 2 €| Tulg) a2

— T (9)} el Ta(9) alle = (€ = enl Ta(@)Ell2) 1T (0) .

1T (g) 13

> €|[Tu(g) |2 — M\ Tnlo)zllz

r>exTTy(g)z

Since the operator T'(g) is bounded, we can choose the value of €5, to be such that

(3.4) ¢ > enl|Tul9) % |l2,

so that the Rayleigh quotient r will be positive since |||z = 1. This holds true for
every choice of x, so the matrix el + A, is a positive definite matrix.

To prove that the second matrix el — A, is positive definite we follow exactly the
same argumentation and we end up with

r = ex? Tn(g)z — ézT Th(g)z.

in the place of (3.3). Then, the second term takes its maximum value for z being
the normalized vector of T}, (g)z. After that, the proof follows the same step and the
same conclusion is deduced. O

We will prove now the important feature that our preconditioner fulfils and leads
to superlinear convergence of PCG. The clustering of the eigenvalues around 1 has
been proven in Theorem 3.3. So, we have to prove that the outliers are uniformly far
away from zero and from infinity. For this we will study Rayleigh quotients of the
preconditioned matrix:

2F K2 (A Kl e T T, (f)z

i T—1 e — i n = i —_————
(3.5) Amin (K7 " Tn(f)) mlelgﬂ xTg zleraj'f{;“ T KT (f)=
and

TEL () ATU(NKL(f) iz T To(f)z
~ max KTVlTn = & i o L = s 3

85I ) = 2, T et TR ()2
Thus, we have to study the range of the Rayleigh quotient

2 Th(f)z _ T Tu(f)=z _ 2T Tu(f)x eT'Tlg)s

fTKz(f)x 2T Tn(g)a(Wz — 2TTa(g)s 2 a(R)Tn(g)ma(h)T

It is well known that the range of the first Rayleigh quotient is contained in the range
of the function w = § which is positive and far from zero and infinity. Therefore, we
have to prove that

limsup su
n—«oop xeﬂgﬂ xTTn(h)Tn 9 Tn(h)z



We will prove only the first inequality of (3.7). The proof of the second one is similar.
This is obtained from the observations that

zTT,(g)x 2T 7 (h)Tn(9)Tn (R)z
. — 1. . f 3 L n L 3
11711.1’1—48029 :z:E:Engﬂ ITTn(h)Tn (Q)Tn(h)fc 205 %i‘lrr—ivgg :n]Er.lﬂg"' wTTﬂ (Q)CU ’
and
2T 1 (W) T (g) () 2 Tn(9)z
i S = liminf ; :
L g 2T Tn(g)x e o (A=) Tn(g)mn(h ™)

So, the proof of the second inequality of (3.7) is equivalent to the proof of the first
one with the function A~! in the place of h.

By inverting the ratio of the first inequality of (3.7) it is equivalent to proving
that

el 7 (R) T (9) T (h)z
3.7 limsup su ° < 00,
] n—toop::e}jgﬂ =TT, (g)z
so, we have to study the ratio
o7 (h) Tn(g)Tn (h)x
(3.8) P o= AT 0% \

It is well known that the band Toeplitz matrix T,,(g) is written as a 7 plus a
Hankel matrix

(3.9) Tn(g) = Ta{g) + Halg),
where H,(g) is the Hankel matrix of rank 2(k — 1) of the form
(3.10) Hu(g) = En(9) + Enlg)",
with
gz g3 - gx - - 0
g3 . . :
(3.11) Eq(g) = gk
0 e - e 0

and E,(g)¥ is obtained from the matrix E,(g) by taking all its rows and columns in
reverse order. The entries g; are the Fourier coefficients of the trigonometric polyno-
mial g (g(z) = go + 2g1 cos(x) + 292 cos(2z) + - - - + 2gx cos(kz)). In the special case
where the root is 0 of multiplicity 2k we have that g; = kgfi ) . It is obvious that
for k = 1, Ha(g) = 0, which means that T,,(g) (the Laplace matrix) is a 7 matrix
and the problem is solved. In case where k = 2 we have that H,(g) is a semi-positive

definite matrix of rank 2 with just ones in the positions (1,1) and (n,n) and zeros
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elsewhere. In case k > 2, the matrix H,(g) becomes indefinite. We denote by A the
(k—1) x (k—1) matrix formed by the first &£ — 1 rows and columns of E,(g):

g2 03 Gk
(3.12) a=| % .
g 0 - 0

and by AF the matrix obtained from A by taking all its rows and columns in re-

verse order. For an n-dimensional vector z we denote by z(™) and by z(™) the

m-dimensional vectors formed from the first and last m entries of z, respectively.
Recalling ratio (3.8), we get

o .'ETTn(hj)gr\EQ;Tn(h)m . mTTn(h)T‘n(ET)_‘TnEh33+$:Tn(€1))1fn(9)Tn(h)z
T =1 Tn(g)z - n +27 Hn(g)e
(3.13) T T L A

2T, (g)z4+3 - DT AR o -DT AR (k1)

LemMA 3.4. Let = be a normalized n-dimensional vector (||z|s = 1) and the
sequence of the vectors T5~1 is bounded i.e. 0 < ¢ < || V|y < 1 for all n or the
sequence of the vectors z*=1 is bounded i.e. 0 < ¢ < ||z~ V|| < 1 for alln , with ¢
being constant independent of n, then the ratio ro is bounded.

Proof. The assumption 0 < ¢ < |2 Vs <1o0r 0 < e < |z V|2 < 1 means
that |Z¢~V|s = O(1)N 2() or |z~ V||, = O(1) N £2(1), respectively. Without loss
of generality, we suppose that |Z*~1) ||, = O(1) (N 2(1), the proof for the case where
51|l = O(1) N 2(1) being the same. It is easily proved that there is a constant
integer m independent of n such that ||z = O(1)N2(1) end y® |2 = o(1)
where y*) is the k-dimensional vector of the entries of z followed by the vector (™),
This is true since otherwise there would be an infinitely large integer m, depending
on n, such that every block of size k of the vector T™ should have constant norm
independent of 7. The latter is a contradiction since then ||Z{™]|; — co. Since both
the numerator and the denominator of the ratio in (3.8) are bounded from above,
to prove that this ratio is bounded it is equivalent to prove that the denominator
7T, (g)z is bounded from bellow far from zero for z of unit Euclidean norm. For
this, we write the matrix T, (g) and the vector z in the following block form:

ngg) | G|o Zm)
T’n(g) = G{’] ‘ Tn—m(g) y L= yz L]

where GG is an m x k& Toeplitz matrix with nonzero entries only in the & diagonals in
the left bottom corner. We take now the denominator:

- Twig)| GO zi™ -
Tz = @™ @) | e T T | =3
(3.14) 0 nem z

(k)

Since T;,(g) and T, —.n(g) are positive definite matrices the first and the third terms
in the sum of (3.14) are both positive numbers. The minimum value of the first term
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depends only on m, which is constant, and is of order nTlEE independently of n far from
zero. The third term depends on n and may take small values near zero. The second
term is the only one which may take negative values, but

i T i T v
22" Gy®)| = 2|z Gy |; < 217 2]|Gl2lly Pl = o(1),

since [[y®|l2 = o(1) and the other norms are constants. As a consequence, the

first term is absolutely greater in order of magnitude than the second one, which

characterizes the bounded behavior of all the sum, and our assertion has been proven.]
It remains to study the quantity r, for vector sequences z such that

(3.15) IZ™l2 = o(1) and 2™l = o(1)

for each constant m independent of n. First, we write the vector z as a convex

iy

combination of the eigenvectors v;s of 7 algebra, with entries (v;); = )

n+1 sin(25%

T

(3.16) = chi, Z lei|? =
i=1

i=1

We denote by D the denominator and by N the numerator of the ratio r, of (3.13).
So the denominator is given by

E: Ct’UTTn(Q) E:L 1 civ; + Ez;nl Ci’U;‘:FHn(g) Z?:l CiUy
D g+ Y e CzUTH n(9) 325 Civs JTAR
= 21 ]! 1.91+Zz— Cl AZ: lcv1+zl—lc'- A Z 1C'U

while the numerator is given by

N E'—l Cciu; Tn(hgg) Z;., 1C1'Ua+2; 1‘31'U Tn(h')H (Q)Tn( )
(3 18) Z -1 GiVi = Z:L 1 Eh‘zzgi +21 1 Cih‘ U H ( )Zn clh Vi
' Z?—l ?hzg‘l- mE 21 1 c;h; AZE 1 C-Lh- vy
Yo TARYE R

D
(3.17)

Il

Il

I

+

where h; = h(:Z5) > hmin > 0and g; = g(;Z5) = (2— 2cos(n+1))k = (25in(ﬁ))2k.

For simplicity, we have put 7; and v, instead of U(k Y and yt- i }, respectively. The
first sum in both numerator and denommator is positive and we call it 7-term, since
it corresponds to the Rayleigh quotient of a 7 matrix. We call the other two terms,
corresponding to the low rank correction matrices A and A, correction terms. The
correction terms may take negative values. It is obvious that the r-terms of the nu-
merator and the denominator coincide with each other in order of magnitude for all
the choices of the vector z, since

Zczhgg-,, = h2ZC gi, 0<h oS ":" < h'max < 00.

So, if the 7-terms are greater, in order of magnitude, than the associated correction
terms, then r, is bounded. The only case where 7, tends to infinity is that where the
correction terms in the numerator exceed, in order of magnitude, either the associated
7-term and/or that of the denominator. We will try to find such cases, by comparing
the 7-terms with the correction terms. Since the correction term corresponding to A%
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behaves exactly as the one corresponding to A, for simplicity we will compare only
the 7-terms with the correction terms corresponding to A. In other words we consider
that [z AZ| is greater than or equal to |7 ARz|, in order of magnitude. Given {N.}
with N = {1,2,...,n} we define the sequence of subsets {5, } such that

1) SpC Np¥n

ld) 2) Vin sequence to which ix € Sy, we have limpco & =0 (i, = o(n)).

Accordingly the complementary sequence of subsets {Q,} is defined as
(3.20) @n= Ni, \:Sn:

It is obvious that the border of the above subsets S, and @, is not clear, but this
does not present any problem in the analysis that follows. However, we have to be
careful to take only sequences belonging to o(n) when dealing with {S,}. We write
the vector = as the sum z = x5 + xg where

(3.21) Tg = Z C;Vy, Tg = Z CiV;.

i€ESpy 1E€EQn

We denote also by Ts = 3.5 T, zg = Ziesn Cili TQ = ) ieq, Ci¥i and g =

Zz‘eQn ¢;v;. In other words we separate the eigenvectors into those that correspond to

“small” eigenvalues (0(1)) and those that correspond to “large” ones {O(1) [ £2(1)).
‘We consider the sequences and

(3.22) {gntn =1 Z ct}n and {sn}n = {Z ¢}

1€EQn iESy

LEMMA 3.5. Let z be such that [Z* Y|z = 0(1) and |z*V|y = o(1) and
the sequence {gn}n of (3.22) is bounded, i.e. 0 < ¢ < g, < 1, then the ratio ry is
bounded.

Proof. In this case we have

2T (9)z = zEmm(9)zs +z3Ta(g)Tg = Z cigi + Z cigi~ >0,
1€Sn i€Qn

since the eigenvalues of the second sum are bounded from bellow. On the other hand
we have

50T Az < AL |74 D)3 = o(1),

since |Z%*~1||; = o(1). We get the same conclusion for the term ig(k_l)TAg(k'l)L
So, the 7-term is the dominant term which is bounded from bellow. Since the numer-
ator is bounded from above, r, is bounded.O

LEMMA 3.6. Letz be such that |T*~ |y = o(1) and ||z*~ 1|z = o(1) and for
the sequences {Sn}tn and {gn}tn of (3.22) there hold lim, o0 8 = 1, liMy—oo g = 0
with ||Tgllz = o (qn)%), then the ratio v is bounded.

Proof. We suppose that the sequence {g,}, tends to zero monotonically, since
otherwise it can be split into monotonic subsequences.

The 7-term gives:

(3.23) eTra(g)z= > o+ > clgi
i€Sn 1EQR
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while the correction term gives:
(3.24) zTAT = (Ts +Tq) AFs +To) = TzATs + 25 AT + THATg.
For the vector Zg we have

Zallz =1 Y evile < D laillmlla< | D & dolmdz) ~ (gn)?,

i€EQn 1€Qn i€Qn iEQn

since ||T;]|3 ~ %, for all i € N,, and the cardinality of Q. is n — o(n) ~ n. So,
n

IZalls = O ((g2)F). Let [Zalls = o ((an)?), then [85AT0| < 1All2]ZalF = olgn),
which means that the second sum of (3.23) exceeds the last one of (3.24) so,

(3.25) zhTa(g)zg = Y o +THATg + 250 g ~ gn-
iEQn

In the case where ||Zg|lz ~ (gn)? we consider the quantity ngn(g):cQ and normalize
the vector zg to the vector £g5 by multiplying by a number of order (qn)‘%, such
that ||£g|lz = 1. If we consider the vector &g in the place of z, which means that
there are no vectors of indices belonging to S, in the convex combination, we get
that 3.0 ¢? = 1 for the new coefficients ¢;s. Since ||Tgllz ~ (gn)® we obtain that
|Zg|l2 ~ ¢ > 0. From Lemma 3.4, by replacing Z¢ in the place of z, we obtain that
20Tn(g)2q is bounded from bellow. If we come back to the quantity x5 Ta(g)zg by
dividing the vector £g by the same number, we obtain the validity of (3.25). For the
estimation of the associated term z}7,,(h)T T, (g)7(h)zq of the numerator, we follow
exactly the same steps in the proof by considering the vector 7,(h)z in the place of
z. So, we obtain

(3.26) 2570 (R) T Tnlg)Tn (R)3g ~ TGTa(9)TQ ~ Gn-

Under the last assumption,||Zg|ls = o ((qn)%), the remaining terms of (3.24)

TLAZs and 275 AZq are both absolutely smaller than g, in order of magnitude.
Exactly the same happens with the corresponding terms of the numerator. So, the
order of the denominator of r, is just the order of Ei(—_‘ 5. c2g; if it exceeds g, or
gn otherwise, while the one of the numerator is just the order of > ;cg cZhg; if it
exceeds g, or ¢, otherwise. In any case the numerator and the denominator coincide
with each other, meaning that r; is bounded.0

A useful definition is given here.

DEFINITION 3.7. A positive and even function h € Can is said to be (m,p)-
smooth function if it is an m times differentiable function in an open region of the
point p € (—m,m) with h0)(p) = 0,7 = 1(1)m — 1 and R™) (p) being bounded.

LEMMA 3.8. Let z be such that |T*~ 1|y = o(1) and |z ~V|z = o(1) and for
the sequences {sn}n and {gn}n of (8.22) there hold limy oo 57 = 1, limp oo gn =0
with |Ts|le = £ ((qn}%). Let also that h is a (k — 1,0)-smooth funciion. Then, the
ratio T4 45 bounded.

Proof The proof follows exactly the same steps of Lemma 3.6 to obtain the same
results until (3.26). In the sequel, we use the assumption that the function & is a
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(k — 1,0)-smooth function. By taking the Taylor expansion of h;s about the point
zero we find

ki .
(38.27) s ”’”( +1) hﬂ*‘m—((’}“)) WD),  &e (o, n’;l)

Thus, the vector corresponding to Zg in the numerator is given by

i Vk—1 k-1
Z h.,;ciﬁi = z (hg + -(-(%h(k U(fi)) iUy = hg.’);‘g-!- Z (n+ 1) mciﬁi,

1€Sn i€Sn 1ESn
BN i
where 7; = = tE€ Sn, bounded. The correction term of the numerator
corresponding to A, is Z = 1, hic;0T A Y 1, hiciT; which takes the form
Z = g, hicd; AZ%ES’ hicWi +23 5 hici¥; /_\Zleg hiciv;

3.28
( ) -+ E‘LEQ hiciT, TA zzeQ hicU; = Zq + 275 + Z3.

We have proven that the third term Zj3 coincides with ¢,. The first term gives

Z;

B a2 \ T

0Z5 + D ies, (n+1) 7:C:T; )A
hoZg + s, (n"_H mcmi)

= hOmSA$5+2hgm5AZZEs ( ’L)k lvmztv2
b Sies, (35) medTAT s, (32

while the second one gives

X

(3.29)

) i c’iﬁi 1

Zy
(3.30)

y k-1
(hgfg +2 ies, (Tf—jl) CiT; ) AZtEQ hiciU;

L il
hoTEA D ico. e+ 3 cs (25 mcﬁ?& Vo hiciT;.
Qn €5, \ n+ €Qn

k-1
First we will estimate the quantity q = || ZiESn (;—L) 7:¢iTi||2. From 1 € S, and

k=1
the fact that 7; = (,/n—Jrl sin (#))3=1 we get that ||7;]]2 ~ ;’%- So,

ookl ;K

Sies, nilleid (25) " 19l ~ 2 Ties, lail (2)
(3.31) \
Zz

S\ 2k 3 1
2 (Tiesn D) (Ties, & (D))" ~ /22 (Ties, ai)?,

where n € (min; |7;], max; |n;|) and 75, means the cardinality of the set S,. Since

(A

1
#S" = o(1) we get that the quantity (Z{esﬂ c?g;)?, which is just the square root of

k=1
the 7-term, exceeds || 3 ;g (Fﬁ) n:¢;T;||2 in order of magnitude. Coming back

to the terms Z; and Z; of the numerator we deduce that the order of the first term
of Z; in (3.29) is

|h5T5 AT s| < hgllTsl31Allz = 2(gn),
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which coincides with ZLAZs of the denominator in (3.24). On the other hand we can

prove that |[T5AZs| ~ ||Ts||3 by taking into account the proof of Lemma 2.6 of [18].
In that work it was proved that
251n (#) T
__TA ; _ -
zi;(0), 0 e i,J € Sn

n+1

where

. L 2k—4
éﬂzﬁj(e):”( k-2 )

TFinally, we obtain that
2 2'26
EE[.\EES Sn:_ Z Z cicizi; (0 ot )2(6),
1 1ES, JESn
where
2
2 2%k —
0= (32 ) B R o= (3) () =0
1€S, jESR i€ESy

By applying the same considerations to the quantity ||Ts||3, after a simple analysis,
we have
2sin%(0)

— y(6),

IZs3 =
where
(k — 2L~1
—_ > 0.
lim y(6) = E;zq 0

From the relations above we conclude that the quantities T4 AZs and ||Ts||3 have the
same order of magnitude.
The order of the second term of Z; in (3.29) is

k=1
2hoTEA Z (n+ 1) N:iC;V;

1ESn

< 2ho||Zs|2l|All2

. k—1
] (L e
n+1 e

i€8Sn

= [[Zsll2 x 0 (Z cfgz-)

i€5,

2
1
2

This term is less than the first one, in order of magnitude, if ¥, c?gi = O (|[Zsl13)
while it is less than the corresponding 7-term, in order of magnitude, if 3, g c2g; =

2(|zs||3). In any case it does not play a role in the order of magnitude of the
numerator. We arrive at the same conclusion regarding the order of the third term of
Z; in (3.29) which is o (ZtES cz gz)

For the terms of Zy in (3.30) we first estimate the term HzaeQ hiciT; .

1
2 2
gy e o 3
ST hiew|| €Y kel < | Y SRl |~ (an)?
1€Qn 5 1€EQn 1EQn 1€EQnA
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Therefore, the order of the first term of Zs in (3.30) is given by
hoTg A Z hiciTi| < hol|Zs|2]|All2 z hicits|| = ||Zslla x O ((Q‘n)%) ;
i€Qn i€Qn 3

which is less, in order of magnitude, than Z% AZs in the denominator of (3.24). The
order of the second term of Zs in (3.30) is given by

. k=1 4 k—1
i ) _ _ i
Z 7T A Z hiei;| < Z ( ) nics|| 1Al
1ES, (TL+1 1€EQn 1E€Sn w1 2
3
X Z hiciﬁf =i (Z C’L?gi) x 0 ((Qﬂ)%> 1
1EQn 9 €8,

which is less, in order of magnitude, than the same term Z5AFs, if Yiies, c2g; =
O (llzs||3) while it is less than the corresponding 7-term, in order of magnitude, if

Ties, 29 = 2 (Is]3), since Zsllz = 2 ((gn)F). O

THEOREM 3.9. Let f € C3. be an even function with roots x1,xa,...,7; with
multiplicities 2k1, 2k, . .., 2k, respectively, g be the trigonometric polynomial of order
k= E;d k; given by (2.1), that rises the roots and w be the remaining positive part
of f (f = g-w). If the function h = Jw is a (k; — 1,z;)-smooth function for all
J = 1(1), then the spectrum of the preconditioned matriz KT (f) " To(f) is bounded
from above as well as from bellow:

¢ < Amin (K7 (£) T T (f)) < Amax (K7 (F) 7' Tn(f)) < C,

where ¢ and C' are constants independent of the size n.

Proof. For the case of one zero at 0, Lemmata 3.4, 3.5, 3.6 and 3.8 cover all possible
choices of the vector z € IR™ to obtain that the Rayleigh quotient r is bounded. The
case of one zero at a point different from 0 is simple since it can be transformed to zero
by a shift transformation of the interval [—m,7]. The generalization to more roots is
straightforward. The main difference concerns on the definition of the sets S, and @,
of (3.19). Under the assumption of | roots z;,za,...,%;, we give the new definition
of the above sets

1) S5, C N,¥n ‘
(3.32) 2) Vin sequence to which iy € Sy we have limy,_ oo 2 —2; =0
(in —nz; =0(n)), §=1,2,...,L

and
(3.33) Q= N NS,

After that definition, Lemmata 3.4, 3.5, 3.6 and 3.8 work well to obtain our result
that r, is bounded, which completes the proof of the Theorem. O

As a subsequent result we have that the minimum eigenvalue of [K7(f)] 1T.(f)
is bounded far away from zero. Hence, from the theorem of Axelsson and Lindskog
[1], it follows immediately that the PCG method will have superlinear convergence.
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We have to remark here that if the smoothing condition of the function h does
not hold, the Rayleigh quotient r;, may not be bounded and consequently the PCG
method may not have superlinear convergence. The worst case, where we get the
maximum value of rg, is that when choosing £ = zg. In that case the denominator
coincides with n—% and so for the numerator to be of the same order the (k — 1,0)-
smoothness of the function h is necessary. Otherwise, if h is a (k — 2,0)-smooth
function, which is the best possible choice, we deduce that the numerator coincides

with F%—_l As a consequence, rp tends to infinity with a rate coinciding with n.

3.2. Convergence of the method:Circulant case. For circulant matrices, in
order to show the clustering of the eigenvalues of the preconditioned matrix sequence

(3.34) (Cr(R)Tn(9)Crn(R) 1 T (f)

around unity, we first remark that although a band Toeplitz matrix and a circulant
one do not commute, they very nearly have the commutativity property since

rank(Th(g) - C — C - Tu(g)) < 2k,

where k is the bandwidth of the band matrix and which is obviously independent of
the dimension n of the problem. We will show that the main mass of the eigenvalues
of the preconditioned matrix (3.34) is clustered around unity. Before giving the main
results for this case, we report a useful lemma.

LeEmMMA 3.10. Let w € C3,. be a positive and even function. Then, for any posilive
€, there exist N and M > 0 such that for every n > N at most M eigenvalues of the
matriz C;71Tn(w) have absolute value greater than e.

Proof. See [23], Theorem 2.1 (The proof for circulant case is just the same as the
one for 7 case). O

THEOREM 3.11. Let Tn(f) be the Toeplitz matriz produced by a nonnegative
function f in Cor which can be written as f = g-w, where g is the even trigonometric
polynomial as is defined in (2.1) and w = h? is a strictly positive even function
belonging to C*. Then for every € > 0 there exist N and M > 0 such that for every
n > N at most M eigenvalues of the preconditioned matriz (8.34) lie outside the
interval (1 — e, 1+ ¢€).

Proof. We follow exactly the same steps and the same considerations as in the
proof of Theorem 3.3 for the T case, with the only difference being that the matrices
Cn(g) and C,(h) replace 7,(g) and 7,(h), respectively. First we obtain that

Tn = 3Ta(9)2Ca(h)Tu(w)Cn(h) " Tulg)~
+ %Tn(.g)_icn(h)ilTn(w)Cn(h)_lTn(g)

1
2
1
2

3.35
(3-35) + L,

with Ls being symmetric and a low rank matrix (of constant rank). It is noted
that we have used the same notation T}, for the associated symmetric form of the
preconditioned matrix.

From Lemma 3.10 we obtain that for the choice of ¢; > 0 there exist a low rank
(of constant rank) matrix Lg and a matrix £ of small norm (||E||2 < €3), such that

(3.36) Cr(h) ' (w)Cr(B) ™ = I + E + L.

Consequently, we obtain the relation

(ST

A 1 1 1 ok
To =1+ 5Tu(9)? BTa(9) ™2 + 5 Tul9) FETa(9)? + L,
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which is nothing but relation (3.3) for the T case.

After the latter manipulations, the proof follows step by step the one given in
Theorem 3.3 the same result is obtained. O

As in the case of 7 matrices, we will prove the important feature that our pre-
conditioner satisfies the and leads to superlinear convergence of PCG.

The clustering of the eigenvalues around 1 has been proven in Theorem 3.11. We
have to prove now that there does not exist any eigenvalue, belonging to the outliers,
that tends to zero or to infinity. For this we will study Rayleigh quotients of the
preconditioned matrix, as in the 7 case. It is easily proved that the previous analysis,
from relation (3.5) to relation (3.7), for the 7 case, holds also for the circulant case
by simply replacing 7, (h) by C,(h).

Therefore, we have to prove that

zTCr(R)Tn(9)Cr(h)z
: Iv ™ n T
(3.37) LS xséuﬂgn ST (g) < 00

For this, we have to study the ratio

_ A7 Ca(W)Ta(g)Culh)z.

(3.38) Tz 2T ()

It is well known that the band Toeplitz matrix T),(g) is written as a circulant
minus a low rank Toeplitz matrix

(3.39) Tu(g) = Cnlg) — Tn(g),
where Ty, (g) is a Toeplitz matrix of rank 2k of the form
(3.40) Tr(9) = Jn(g) + Ju(g)”,
with
] TP gk aie g2 g1
: : o
(3.41) Jnlg) =] : a |
0 --- e 0

where the entries g; are the Fourier coefficients of the trigonometric polynomial g
(9(x) = go+2g1 cos(z) + 292 cos(2z) +- - - + 2g cos(kz)). It is obvious that Ty (g) is an
indefinite matrix, while C,, is a semi positive definite one. We define by A the k x k
matrix formed by the first k& rows and the last & columns of J,(g):

g 92 @
(3.42) A= 0 B g2
0 o 0 g
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We use the same notations T™) and z(™ for the first and the last m-dimensional
blocks of the vector z, respectively.
Recalling ratio (3.38), we find

= 2T Cn(h)Tn(9)Cn(h)z _ sTCa(hICH(9)Cn(R)z—2T C(h)Tn(9)Ca(h)z
(3.43) T T Th(g)z T 2TCn(g)a—2TTy(g)r _
’ _ T Ch(hg)z—zTCa(R)Tn(9)Cnlh)z _ =T Cn(h?g)z—z Cn(h)Tn(g)Cn(h)z
T ZTCh(g)z—z M T Az —g(TATZ(R) T T Cp (g)z—20) T Az(R) )

LEMMA 3.12. Let = be a normalized n-dimensional vector (||z|lz = 1) and the
sequence of the vectors T*) is bounded ie. 0 < ¢ < [|Z ™2 < 1 for all n or the
sequence of the vectors (%) is bounded ie. 0 < ¢ < H;c_(k)Hz < 1 for all n , with c
being constant independent of n, then the ratio v, in (5.43) is bounded.

Proof. The proof follows the same steps of the one of Lemma 3.4 O

It remains to study the quantity r, for vectors x such that

(3.44) Iz 2 = o(1) and Iz ]2 = o(1)

for each constant m independent of n. First, we write the vector z as a convex

combination of the eigenvectors v;s of circulant algebra, which are the Fourier vectors
. . 2(i=-1)(F—-1)r
with entries (v;); = —1\5&‘ n

we are interested in real vectors z. Without loss of generality, we assume that n is
even. It is easily seen that only the vectors vy and vz are real vectors while all the

. The eigenvectors v; are complex vectors while

others are complex ones, where v,_;41 is conjugate with v;11, i=1,2,...,5-1. To
form the real vector z, we have to chose real coefficients ¢;s in the convex combination
with Cp—i+1 = Ci41, 1= 1, 2, ey _2:-1_. -1 SO,

n n
(3.45) T = U+ DR, U+ Cp g + 2, V)

= v +2) %, ciRe(w) +cgpavgya,
where ¢3 +2) 2 ,¢2 + c2%+1 =1 and Re(v;) being the real part of v;, with

Lcos (Q(z —-1)(7 — l)w) ‘
vn n
For simplicity, in what follows we write the convex combination in the form =z =
> civg, but we will have in mind that the coefficients c;s are as they are described
in (3.45).

As in the T case we symbolize by D the denominator and by IN the numerator of
the ratio r, of (3.43). Therefore, the denominator is given by

¥ = E:-Ll CiU?Cn(Q) Z?=1 Civ — 21;1 CiU?Tn (9) Z?:l City
n e n
(347) - z;:l cggi - Zi:ﬂ:‘l. Ciwg‘g:”(g) ;i:l Civi
= >lia1 cggi =23 el A

while the numerator is given by

N = Z%l Ci“?cn(hjg) S €% — Yoy esv] Co(R)To{9)Cn(h)
(3.48) ¥ 3 ngtny=3 0 othi =37 sahul (g1} et
= Y. Ghlg—2) 0 eh@lAY cihy,,

where f?,i = h(@) > hmin > 0 and g; = g(‘l(’%lﬁ) =(2- 2cos(2("—:11)1))’“ =
(2 sin((—t_Tl)Ti))%. For simplicity, we have put 7; and v, instead of ?Jgk) and ygk),
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respectively. The first sum in both the numerator and the denominator is positive and
we call it circulant term, since it corresponds to the Rayleigh quotient of a circulant
matrix. We call correction term, the second term which corresponds to the low rank
correction matrix A. It is obvious that the circulant terms of the numerator and the
denominator coincide with each other, in order of magnitude, for all the choices of
the vector z, since

n n
Zc?hfgl = h2 Zcfgi; 0< h'min < il < hmax < 00.
i=1 =1

Thus, if the circulant term is greater in order of magnitude than the associated cor-
rection term, then r, is bounded. The only case where it tends to infinity is the one
in which the correction term in the numerator exceeds, in order of magnitude, that
of the associated circulant term as well as the denominator. We will try to find such
cases, by comparing the circulant term with the correction one.

In analogy with the 7 case we define the sequences of subsets {S,} and {Q,} as
follows

1) S. C N.Vn

(3.49) 2) Vin sequence to which 4, € Sk we have limp_o & =0,
or limy_ e 2552 =0,
(3.50) Qn = Ni\ Sn.

We use the same notations for the vectors zg, zg, Ts, zg, To and Zg, and
consider the subsequences {gn}n = {Zicq, ¢ }n and {sn}n = {F;cs. Fln-

LEMMA 3.13. Let x be such that [Z®)||y = o(1) and |z®|2 = 0(1) and the
sequence {gn }n is bounded, i.e. 0 <c < g, <1, then the ratio vy is bounded.
Proof. As in the T case

T Cn(g)x = 25Cnlg)zs + a:gCn(g)mQ = Z ctg; + Z clgi~c >0,
1ESy 1E€EQn

since the eigenvalues of the second sum are bounded from bellow. On the other hand
we find

77 Az| < |A]l2)Z]2lizll2 = o(1),

since we have proven that both ||Z||z = o(1) and ||z||2 = o(1). Hence, the circulant
term is the dominant term which is bounded from bellow. Since the numerator is
bounded from above, r, is bounded.O

LEMMA 3.14. Let z be such that |[T®)|z = o(1) and |lz®|; = o(1) and
for the sequences {s,}n and {gn}n there hold lim, oo 8n = 1, limy .00 g = 0 with

IZgllz =0 ((qn)%) and ||zglla =0 ((qn)%), then the ratio v is bounded.

Proof. We suppose that the sequence {gn}» tends to zero monotonically, since
otherwise it can be split into monotonic subsequences.
The circulant term gives:

(3.51) T Cnlg)z =) g+ D cas,
1€85n 1€Qn
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while the correction term gives:
(3.5287 Az = (Ts + Tq) T Alzs + zg) =TsAzg +T5Azg + Tolzg +ThAzg.

For the vector sequences Tg and zg we have

1

2

e e - s 1
IZallz =11 > e@illa < Y leillmilla < [ > DoImlE |~ (gn)?,

1€Qn 1€Qn 1EQn i€Qn

wap=

since |[7;]|3 ~ £, for all i € N, and the cardinality of Qn is n — o(n) ~ n, while

1 1
z 2z

lzgl =1l D cuglle < D lalllwlla < | D ¢ Solwlg ] ~(gn)?,

1€Qn 1EQn 1EQn 1EQn

for the same reason. So, |Tglz = O((qn)%) and |lzgl: = O((qn)%) . Let

IZallzllzglla = 0(g:), then [F5Azg| < [|All2]|Zgll2llzoll2 = o(gn), which means that
the second sum of (3.51) exceeds the last one of (3.52) so,

(3.53) e5Talg)zg = ) | cioi — 285020 ~ gn-
1€EQn

In the case where ||Tgll2 ~ (lzgll2 ~ (g.)% we consider the quantity t5Ta(g)zq and
normalize the vector zg to the vector £ by multiplying by a number of order (qn)*% ,
such that | £g|lz = 1. If we consider the vector Zg in the place of z, which means
that in the convex combination we do not have any vectors with indices belongin

to Sp, we get that ZiEQn ¢? = 1 for the new coefficients ¢;s. Since ||ZTgllz ~ (gn)?
we obtain that EE'Q ~ ¢ > 0. From Lemma 3.12, by replacing Zg in the place of z,
we obtain that :T:ng(g):?:Q is bounded from bellow. If we come back to the quantity
mng(g)xQ by dividing the vector Zp by the same number, we obtain the validity
of (3.54). For the estimation of the associated term mECn(h)TTn(g)Cn(h)mQ of the
numerator, we follow exactly the same proof by considering the vector Cy,(h)x in the
place of . Therefore

(3.54) mgcn(h)TTﬂ(g)Cn{h)xQ ~ Ing(Q)IQ ™~ Qn.

Under the assumptions ||Ts|lz = o ((qn)%) and ||zglls =0 ((qn)%), the remaining
terms ZL Az g, TL Az and T Az of (3.52) are all absolutely smaller than gy, in order
of magnitude. Exactly the same happens to the corresponding terms of the numerator.
So, the order of the denominator of r; is just the order of 3, s c?g; if it exceeds g,
or gn otherwise, while the one of the numerator is just the order of ), ¢ cZh?g; if it
exceeds gy, Or gn otherwise. In any case the numerator and the denominator coincide
with each other, meaning that r, is bounded.O

LEMMA 3.15. Let x be such that [Ty = o(1) and |22 = 0(1) and for the
sequences {3p}n and {gn}n there hold limp—co 8p = 1, liMp—oo gn = 0 with ||Tgllz =
2 ((qn)%) or||lzglla = 2 ((qn)%). Let also that h is a (k,0)-smooth function. Then,
the ratio T4 is bounded.

109



Proof. The proof follows exactly the same steps of Lemma. 3.14 to obtain the same
results until (3.54). First, we will prove that ||Zg||2 ~ ||zg|lz = 2 ((qn)%), otherwise
[Zgll2, lzglla = 0 (Ziesﬂ c?g?). For this we assume, without loss of generality, that

lzsllz = o(||Zsll2) and are looking for a contradiction. From the considerations (3.45)
and (3.46) it is easily seen that

(3.55) (Zs); = % > ecos (Q(Lﬂé_?;})ﬁ) _ % > exeos((G ~ 1))

iES, 1ES,

(3.56)(zg5); = % Z cicos{((n—k+j—1)y) = % Z cicos((k+ 1 — jw),

1ESy €S,

for all j = 1,2, k, where we have put y; = @ It is obvious that (Ts); =
(zs)e—j, J = 2,3,...k, which means that the above vectors have common entries

with possible different orderings except for the first ones, i.e. (Ts)1 = % Ziesn c; and

(zs)1 = -\/1—5 > ies, cicos(ky;). To have different orders of magnitude in the vectors
Tg and zg, it should be

1
(3.57) (Tsh = s Z i ~ [Zsll2
i€Sn
and
(3.58) (zs); = %Ezsj cicos(jys) = o (ITslla), 5=1,2,..., k.
We consider now the vector z = (27 22 - 2)T which is bounded ||z < oo, indepen-

dent of n. From the difference in the order of magnitude of the entries in (3.57) and
(3.58) we deduce that, for all such vectors, there holds

1 1 1 o . -
(3.59) (Ts) = T Z G~ = D a- ﬁ;zj > cicos(jyi) ~ [Zs]l2.

iE€Sn i€Sy, i€8n
The Taylor expansion with &k + 1 terms of cos(jy;) gives
}z(k—l) i ,)2.&:

(3.60) cos(jy;) = 1 — ——(jzg')z s (;1)(’*1)——%3(’; 7 + (—1) Ug;ﬂ

cos(jdi),
where §; € (0,%;). By replacing in (3.59) we find

k .
Eiesn Ci — Ej:l Zj Eiesn Ci COS(J‘%‘)]
k k 2
E-&esn Ci — Ej:l Zj Eiesn i+ Zj:l zj% Zéesn Ci'yiz
- k j2(k—1) 2(k-1
= e (R T gt e gl

:2(k—1)

k o
+ ) 2=t zj%(m)'! 2ie5 ciyf® COS(J?J@‘)] .

(Ts)1 ~

s s

(3.61)

If we choose the vector z such that

k k k k
862y N m=1, 3 %7 =0, Y a0 =0 g N -1 =,
j=1 =1 j=1 =1
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all the terms in (3.61) are zero except the last one. Thus the order of ||Zg||z is given
by

2

e k 2% i
(@shl ~ x| Ejer 2% Lies, cibi* cos(id:)|
k 2k .
= ‘\/1% Ej:l EAE Z«.‘esn L’31|92k \}— Ziesn |Ci|yi2k

IZsll2

(3.63) : )
1 2 k Sn )
i (EiESn 1)* (ZzESn ciyj ) % #n (EieSn C?Qz'z) ’
1
= @ (Emesn C'Lgt ) :
i,
which constitutes a contradiction. In the case where ||Zs|l2 = 0 (3 ;eg, c?97)?, the
ratio is bounded since the circulant term exceeds all the others. The choice (3.62) can

be obtained from the solution of the k x & linear system

1 1 1 1 -4 1
1 92 32 (k—1)2 z3 0
(364) 1 24 34 e U\’I - 1)4 Z3 — 0
:ll_ 22{.';:“1) 32(1&—1) . (k _ 1.)2(.'6-—1) Z.k; D

This is a Vandermonde system which has a unique solution different from zero and
bounded since it depends only on &k and not on n.

In the same way we can prove that |Z5zg|2 ~ ||Zs/3 ~ |lzg||%. By taking into
account Lemma 2.9 and Lemma 2.4 of [18] we can prove that [Tz Azg| ~ [T5zsl, as
we have done in the 7 case.

As a consequence,

(3.65) IZsl3 ~ llzsll3 ~ [Z5zs| ~ [Z5 Azs| = 2 (gn) -

In that case we use the assumption that the function h is a (k,0)-smooth function.
By taking the Taylor expansion of h;s about the point zero we deduce

: 2(i-1)m\k .
Be—i (M) ot Ca e, ae (O, 2(i - m) |
n k! n

Hence, the vector corresponding to Zg in the numerator is given by

2(i—1)m\k . k
2(e — )w
E hiciT; = E (ho + e z, ) h(k)(fi)) ¢i¥U; = hoZs + E (_( - ) ) 0:¢iTs,

€Sy 1ESn 1ES,
_ ey - : : :
where 7; = =, 1 € Sy, is bounded, while the one corresponding to zg is
i—1)r
3 e, = hozs + 3 (2 ) i
i€Sn i€8,

The correction term of the numerator, Z = S, hie;DF A Y1, hicju; takes the form

ZIES hieoF Azes hiciv; + 2 s, hiciD? AZ?EQ hic;u;

2 ieq, Med; AZzeS hctv + 2ien hic@] AY ieq, Mo
Zl -+ ZQ 4 Z3 4= Z4

Z
(3.66)

I+l
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As a conclusion, we have proved that the fourth term Z, does not exceed g,. The

other terms give
k
_) mciﬁ;r> A

. k
hozf + Yies, (Q(Z;I)W) ’?ici!i) = hiTg Az
: k . k
+ hoBEA Ties, (2EE) miciw; + ho e, (@)
: k : k
x  meUAzk + Ziesﬂ (2(1:«.1)W) UETEAN Ziesn (2(1;1)W) TGy,

Zy

I
o
=)
8
w0
+
&
tn
3
—
hd
3|1
=
3

X

(3.67)

: k
(368) Zg = hofgﬂ EieQn h,-ciy_i -+ ZiESn (@) niciﬁ;’rA ZiEQﬂ h;’CiQi,

; k
(3.69)Z3 = ho 2ieQn hiei] Azg + 2icQn hiei@] A 2ies, (3(1—_1;1‘)1) TiCily.

First we estimate the quantities

=1 ( )kﬂicﬁillz and g=| ) (Z@%)W)kmqgi”z_

1€8, i€Sn

‘ K
. (=1)(i-1)m
From i € §,, and the fact that 7; = (\/%_e " ) we get that ||T;]la ~ .
=1

nZ
Therefore,
» B ink
T < Ties, Inlled (522) 19l ~ ks, leil ()
R 3 [#5.
= ﬁ(ziesn 1) (Eiesn ¢ E ) (216511 Ci g

1
where n € (min; |n;|, max; |n;]). Since i#_é'_ = 0(1) we deduce that g = o ((Zlesﬂ cigi) 2).

For the same reason we get ¢ = o ((Elesn gi)? ) Coming back to the terms Z,

Zy and Zj3 of the numerator we get that the order of the first term of Z; in (3.67) is
[hozcs Azg| = 2(gn), given by (3.65), which coincides with Z% Az g of the denominator
n (3.52). The order of the second and the third term of Z; in (3.67) are

= |hoTHA Z (2&—1 ) 7iCil; Z (@)kﬂiﬂ'im

1€S, €S,

< hol|Zs 2] Al

2

1
2
=[Zsll2 x 0 (Z C?Qi) )

1€Sn

. k
2 s
= |ho E (—(E“;L)I) nie; Azg

i€Sa

1
2
= [[Zsll2 x o ( > ﬁgz)

1€Sn

I3 es. czg; = O (||Zs||2), then both terms are less than the first one of Z;, in order
of magnitude. If 7, ¢ c2gi = 2(||Zsll2), then both p; and p, are less than the
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corresponding circulant term, in order of magnitude. In any case they do not play
any role in the order of magnitude of the numerator. We arrive at the same conclusion
for the order of the third term of Z; in (3.67) which is o (Ziesn c?g;). For the terms
of Z in (3.68) we find that the order of the first one is

o b A 1
hoTA Y hiciwy| < hollTsllzllAllz || D hiciws|| ~ [Zsl2(gn)?,
1€Qn 1€EQn 9

which coincides with TEAEQ of the denominator in (3.52). The order of the second
term of Zy in (3.68) is

. k-1 . ko
T ) _ im -
5 peeine B ey 2 Z( ) miei|| 1Al
i€5n (n i i€Qn ies, \P 1 2
_%
1
| e <o (St ) <o
tEQn i€Sn

2

which is less than the first one, in order of magnitude, if 3,5 ¢Zg; = O (||Zs]3) while
it is less than the corresponding circulant term, in order of magnitude, if Ziesn g =
2 (|zs||3), since ||Zs|l2 = 2 ((qn)%) Exactly the same happens with the terms of
Zs in (3.69).0

THEOREM 3.16. Let f € C3. be an even function with roots zo,z1,. ..,z with
multiplicities 2k1, 2ka, . .., 2k;, respectively, g the trigonometric polynomial of order
ki = 22:1 k; given by (2.1), that rises the roots and w the remaining positive part
of f (f = g-w). If the function h = w is a (k;,z;)-smooth function for all z;s,
J = 1(1), then the spectrum of the preconditioned matriz KS (f)~*Tn(f) is bounded
from above as well as from bellow:

(3.70) ¢ < Amin([KZ (M7 Talf)) < Amax (K (N 7 Ta(f)) < C,

where ¢ and C' are constants independent of the size n.

Proof. For the case of one zero at 0, Lemmata 3.12, 3.13, 3.14 and 3.15 cover
all possible choices of the vector z € IR™ to obtain that the Rayleigh quotient r; is
bounded. The case of one zero at a point different from 0 is covered by a shift trans-
formation of the interval [—m, w]. The generalization to more roots is straightforward.
The main difference concerns on the definition of the sets S, and @,, of (3.49) and
(3.50). We give the new definition of the above sets

1) S, C N,¥n
(e 2) Vi sequence to which i € Sk we have limp_.co & —3; =0
or limp o 55" —2; =0, j=1,2,...,L
and
(3.72) Qn = No\ Sn.

After that definition, Lemmata 3.12, 3.13, 3.14 and 3.15 work well to obtain our result
that 7, is bounded, which completes the proof of the Theorem. O
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As a subsequent result we have that the minimum eigenvalue of [KS ()] Tn(f)
is bounded far away from zero. Hence, from the theorem of Axelsson and Lindskog
[1] it follows immediate that the PCG method will have superlinear convergence.

We have to remark here that if the smoothing condition of the function A does not
hold, the Rayleigh quotient 7, may not be bounded and consequently the PCG method
may not have superlinear convergence. The worst case, where we get the maximum
value of r,, is the one of choosing z = z5. In that case the denominator coincides
with =z and so for the numerator to be of the same order the (k, 0)-smoothness of the
function h is necessary. Otherwise, if h is a (k — 1,0)-smooth function, which is the
best possible choice, we find that the numerator coincides with ;TL—l Consequently,
r; tends to infinity with a rate coinciding with n.

REMARK 3.1. Following a theory closely related to that just developed, band plus
Hartley preconditioners could be applied for the solution of ill-conditioned Hermitian
Toeplitz systems. In this paper, we do not study this case. We simply remark that a
similar analysis could be applied to obtain analogous results for the superlinearity of
the convergence. Since Hartley matrices are closely related to circulant matrices, we
believe that (k,Q)-smoothness, for the function h, is needed.

4. Smoothing technique. Our analysis brings up the following question: Is the
condition of smoothing valid for most of the applications? The answer to this question
is not positive. There are problems where the positive part & is smooth enough but
in most of them we are not guaranteed. In some of the problems the function % is
not differentiable at 0, nor continuous. In the following two subsections we propose a
smoothing technique which approximates A with a (k — 1,0)-smooth function for the
7 case and with a (k,0)-smooth function for the Circulant case, respectively, in order
to get superlinear convergence.

4.1. Smoothing technique: 7 case. Let assume that the factor h of the gen-
erating function f is not a (k — 1,0)-smooth function. We define the function & as
follows

. Pilhl(z) if z € (—¢,¢)
(4.1) h(ﬁ)-{ kh(z) if xe[—w,(—E]U[fﬂr]

where ¢ is a small positive constant and Pg[h] is an even and a (k — 1,0)-smooth
function which interpolates h at the points —e,0, €. It is obvious that we can choose
as Py[h] the function

h(e)

2) Pulh@) = 2L g,

which is a k degree interpolation polynomial on the interval (0, ¢), or the function

hie) — h
(43) Pulhi(s) = — =5 2cos(a)t + o,

(2 —2cos(e)) 2
which, for even k, is a k degree interpolation trigonometric polynomial on the interval
(—¢,€). For small e the function Py[h] is a very good approximation of h on the
interval (—e, ¢). For this reason we propose as preconditioner the matrix _

(4.4) Ko (f) = ma(R)Ta(g)a ().
The smoothness identity of the function f =g- h? is valid and Theorem 3.9 guarantees
superlinear convergence of the PCG method with preconditioned matrix sequence
KZ(f) 1T (f). We state here the generalization of Theorem 3.9.
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THEOREM 4.1. Let f € C3, be an even function with roots xg,o1,...,T; with
multiplicities 2k, 2k, ..., 2k, respectively, g the trigonometric polynomial of order
k= Z;ﬂ k; given by (2.1), that rises the roots, w the remaining positive part of f

(f =g w) and h = \/w. We define the function h as follows:

P lb(z) fze(z; —eim+e)i=212.:.,1 and

(4.5) h(z) = h is not a (k; — 1,z;)-smooth function |
h(x) elsewhere
where €;,7 =1,2,...,1 are small positive constants and
ij [h'} (I) o (:cvmj+cj-)h(:c,-+5j)—(a;:ifmgl—ej)h(xl—e_,—)—zejh(zj) \:t; B mjlk + h{$j) 5
J
Po (@) = (r2eoslommite)(esten)t@-2costes;—es))hiz; —e;)=(=2cos(2e;))h(as)
y :

. (2—2cos(2¢;)(2—2 cos(e; )
% (2—2cos(z —x;))2 + h(z;).

Then, the spectrum of the preconditioned matriz Kfl(f)‘lTn(f) (f = g-flg) is bounded
from above as well as fromn bellow:

tite St TG P T L R R~ 0000 = 6,

where ¢ and C are constants independent of the size n. We have to remark here that
the functions Py, [h] have been taken to be interpolation functions of the function f
at the points x; —€;,2;,; + ¢; as we have done in relations (4.2) and (4.3) for the
points —¢, 0, €.

4.2. Smoothing technique: Circulant case. Let us assume that the factor
h of the generating function f is not a (k,0)-smooth function. Then, we define the
function h given in (4.1), in analogy with the 7 case. Pj[h] is an even and a (k,0)-
smooth function which interpolates h at the points —e, 0, ¢ and could be chosen as

{4-6) Pk[h](:a:) = ﬂ?%lmlk+l 4 Higg
or
(4.7) Pi[k](z) = L"Ul(g _ QCOS(w))% + i,

(2 — 2cos(e)) =2

For small ¢ the function P;[h] is a very good approximation of i on the interval (—e, €).
Then, we propose as preconditioner the matrix

(4.8) KE(f) = Ca(R)Tn(9)Cn(R).

The smoothing identity of the function f = g- A2 is valid and Theorem 3.16 insures
superlinear convergence of the PCG method with preconditioned matrix sequence
KS(f) " Tn(f). We state here the generalization of Theorem 3.16.

THEOREM 4.2. Let f € Car be an even function with roots mg,x1,...,T; with
multiplicities 2k1,2ka, ..., 2k, respectively, g the trigonometric polynomial of order
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k= 22-:1 kj given by (2.1), that rises the roots, w the remaining positive part of f
(f =g -w) and h = Jw. We define the function h as follows:

P [h)(z) ifze€(z;—e,z+€),j=12,...,1 and

(4.9) h(z) = h is not a (kj, z;)-smooth function ,
h(z) elsewhere
where €;,7 = 1,2,...,1 are small positive constants and
Plble) = (E_IJ+5J)h(Ij+EJ)_(z;;g;‘i)""(:ci_EJ)"QEJh(z’i){‘T — z;[Ft 4 h(z;) or
J
P, [h}(.’t) _ (242505($f3j+6j))h(IJ+CJ)+(2-2CDS(I—:I:-'i+Ej))h-}(:rj—€j)—(2“2CUS(2EJ’))h(Ij)
4 (2—2 cos(2e;))(2—2 cos(e;)) 5

k41

X (2—2cos(z —x;)) T + h(z;).

Then, the spectrum of the preconditioned matriz KS (f)"'To(f) (f = g-h2) is bounded
from above as well as from bellow:

(4.10) 8< R (RS (A 2 Tal)) < Aass (B () V0 0H) <€,

where ¢ and C' are constants independent of the size n.
REMARK 4.1. The same smoothing technique could be applied for the band plus
Hartley preconditioners, when the function h is not a (k,0)-smooth function.

5. Numerical Experiments. In this section we report some numerical exam-
ples to show the efficiency of the proposed preconditioners and to confirm the validity
of the presented theory. The experiments were carried out using Matlab. In all the
examples the righthand side of the system was (1 1 --- 1)T in order to compare our
method with methods proposed by other researchers. We have run also our examples
with the righthand side being random vectors and we have obtained results with the
same behavior. The zero vector was as initial guess for the PCG method and as

stopping criterion was taken the validity of the inequality %}E—;}Hﬁ <1077, where r(*)
is the residual vector in the kth iteration.

EXaMPLE 5.1. We consider the function f)(z) = z* as generating function. The
associated function h = %(m—) is a (2, 0)-smooth function and so, smoothing tech-
nique is not needed for both band plus 7 and band plus circulant preconditioners. In
Table 5.1 the number of iterations needed to achieve the predefined accuracy are il-
lustrated. We compare the performance of our preconditioners with a variety of other
well known and optimal preconditioners: R is the pioneering one proposed by R. Chan
[8]. S*3 is the proposal of S. Serra Capizzano in [21] using best Chebyshev approx-
imation (3 is the degree of the polynomial). M2} is the preconditioner proposed
by D. Noutsos and P. Vassalos in [19], which is based on best rational approximation
with 1, 2 being the degrees of the numerator and denominator, respectively. T is the
w circulant preconditioner proposed by D. Potts and G. Steidl in [20]. Finally, by
7 and C, we denote the proposed in this paper band plus 7 and band plus circulant
preconditioners, respectively. The efficiency of our preconditioners is clearly shown.

EXAMPLE 5.2. Let

_ [ 2z +1 %l < %
@ ={ 10t se mriies)



TABLE 5.1

Number of iterations for fi(z) = z*

[ o [R[SC[ME]W][r]C
32 | 15| 11 6 T|15|6
64 | 20| 11 8 8 | 5|6
128 | 24 | 12 10 8 |66
256 | 27 | 12 11 9| 7%
512 | 29| 13 11 9 | 7|7
1024 | 30 | 13 12 9 (7|7
TABLE 5.2
fa(z)
n AmaxT | AminT | 7 | AmaxC | 2minC | C | B
32 | 1.7612 | 0.9003 | 6 | 42123 | 0.7960 | 9 | 8
64 | 1.7694 | 0.8925 | 7 | 4.2465 | 0.8027 | 10 | 24
128 | 1.7736 | 0.8869 | 7 | 4.2648 | 0.8070 | 10 | 27
256 | 1.7758 | 0.8825 | 7 | 4.2742 | 0.8098 | 11 | 29
512 | 1.7771 | 0.8791 | 7 | 4.2791 | 0.8116 | 12 | 30
1024 | 1.7778 | 0.8764 | 7 | 4.2815 | 0.8127 | 12 | 31
be the generating function. The corresponding function h is QT'%)(T), which is

an (1,0)-smooth function. Hence, our preconditioners ensure superlinear convergence
without any smoothing technique. In Table 5.2 we give the minimum and the maxi-
mum eigenvalues of the preconditioned matrix and the iterations of the PCG method
needed for both 7 and circulant cases. In the last column, denoted by B, we give for
comparison the iterations needed if we use the band Toeplitz preconditioner generated
by the trigonometric polynomial which rises the roots.

ExXAMPLE 5.3. For the generated function

[ 2z +1 lz| < 3
fa(z) = { (2 +2)a! z€[—m,m] \2[*%%}

we have that & = 2. It is easily checked that the corresponding function h{z) =
W“fﬂm), is an (1,0)-smooth function. Consequently, the 7 plus band preconditioner

2—2cos(z

works (well without smoothing technique, while the circulant plus band one needs a
further smoothing step. In Table 5.3 we give the corresponding results, as in Table 5.2
for the 7 case without smoothing, while in Table 5.4 we give the results for the circulant
case without and with smoothing technique. The band plus circulant preconditioner
is denoted by C. It is easily seen that the smoothing technique is required for the
circulant case to achieve superlinearity.

EXAMPLE 5.4. Finally, we consider the function

8|z + 1] lz| < %

fa(z) = { (&2 +2)2° z€[-mn]\

[SE]

- ,721]
as generating function. In this example we have & = 3 and moreover the corresponding

function h(z) = \/Iﬁf“‘:—g;%&w is also an (1,0)-smooth function. Thus, the smoothing
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TABLE 5.3
fa(x) T without smocthing

n AmaxT | AmiaT |7 | B
16 4977 | 0854 | 7 | 8
32 | 5.5929 | 0.843 | 8 | 17
64 6.049 | 0.835 | 10 | 34
128 | 6.3624 | 0.8291 | 11 | 45
256 | 6.5669 | 0.8249 | 11 | 54
512 | 6.6955 | 0.8221 | 11 | 61
1024 | 6.7744 | 0.8205 | 12 | 67
TABLE 5.4

fa(z) Circulant and smoothing circulant in [—.5, .5]

n AmaxC | AminC C | AdmaxC AminC C B
16 29.893 | 0.3498 | 11 | 28.433 | 0.37039 | 11 | 8
32 49.417 | 0.2286 | 13 | 32.369 | 0.34827 | 13 | 17
64 83.835 | 0.1386 | 15 | 34.260 | 0.34001 | 14 | 34
128 | 146.42 | 0.0789 | 18 | 35.552 | 0.3328 | 15 | 45
256 | 263.63 | 0.0428 | 23 | 36.218 | 0.3292 | 17 | 54
512 | 488.33 | 0.0224 | 26 | 36.556 | 0.3273 18 | 61
1024 | 926.19 | 0.0115 | 29 | 36.725 | 0.3265 | 18 | 67

technique is necessary for both cases to achieve superlinearity. In Table 5.5 we give
the results for the 7 case without and with smoothing technique, while in Table 5.6
we give the associated results for the circulant case. The meaning of stars is that the
iterations required are over 100. The presented numerical results fully confirm the

theory developed in the previous Sections.

In Figure 5.1, the smoothing technique is shown graphically for the function

z?(1+|z|)

h(:c) = ﬁm.

3.

‘We have to remark that h is not a differentiable function at zero.

FIG. 5.1. Smoothing of h(z) =

22(14|x])
2—2cos(x)’
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TABLE 5.5
fa(z) 7 and T with smoothing in [—.5, .5]

n MaaxT | AmiaT | T | At | Aain® | 7 | B
16 24.416 | 0.6582 | 10 | 31.832 | 04781 | 8 9
32 | 40.853 | 0.4729 | 14 | 57.051 | 0.3312 | 10 | 20
64 | 68.551 | 0.3134 | 20 | 63.556 | 0.3281 | 11 | 48
128 | 116.29 | 0.1929 | 33 | 65.301 | 0.2965 | 13 | *
256 | 201.33 | 0.1096 | 53 | 66.761 | 0.2897 | 14 | *
512 | 358.56 | 0.0581 | * | 67.102 | 0.2813 | 15 | *
1024 | 698.12 | 0.0246 | * | 67.289 | 0.2794 | 15 | *

TABLE 5.6
fa(z) Circulant and smoothing circulant in [—.5, .5]

n ;\maxc )\minC C /\me )\minC C B
16 | 371.96 | 0.0953 | 12| 33815 | 0.1073 |11 ] 9
32 | 1525.2 | 0.0239 | 17| 517.36 | 0.0863 | 13 | 20
64 | 7855.2 | 0.0041 | 25| 653.94 | 0.0756 | 16 | 48
128 | 48497 | 0.0006 |43 | 743.32 | 0.0699 | 19 | *
256 | 3.3E5 | 75E -5 | 79 | 792.62 | 0.0672 | 21| *
512 | 2.5F6 | 1.6E—5 | * | 818.57 | 0.0669 | 22 | *
1024 | 1.7E7 | 2.7E -6 | * | 829.61 | 0.066710 | 23 | *
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